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Abstract. We give an example of a short-range Ising model with a unique ground state 
with two unusual properties: it has some continuous spectrum, and it has fractal symmetry. 

From experience with models, and from the vast amount of data concerning real solids, 
it seems there is a strong tendency for low-temperature matter to be highly ordered 
and, in fact, crystalline. Understanding this phenomenon from the statistical mechanics 
of particles (electrons and nuclei) interacting through Coulomb forces or, using 
molecules for the particles, through short-range forces, is a well known and important 
unsolved problem [l-51. See [6] for a recent review. 

Part of the difficulty of the problem is that one can only get detailed results with 
a handful of models. It is only recently, for example, that simple nearest-neighbour 
lattice gas models have been found (see [ 6 ] )  which do not have crystalline ground 
states; they have 'quasicrystalline' ground states in a manner appropriate to real 
quasicrystals. Even these models are highly ordered, and are very close to being 
crystalline. The purpose of this letter is to give an example of a short-range Ising 
model which has a unique ground state which is much further from the crystalline 
examples than ever found before: two of these features of the ground state are that it 
has some continuous spectrum, and that it has perfect fractal symmetry in the sense 
that the structure of the ground state is invariant under certain scale changes. 

Our model is an Ising spin system on the one-dimensional lattice 2. The spin 
variable at site j of 2 will be denoted aj, and can attain the values *l. The Hamiltonian 
is a translation-invariant four-body interaction of the general form 

with a specific non-negative coupling J. To be more precise, 
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We will show that the ground state of this model is non-degenerate, has both discrete 
and continuous spectra, and has perfect fractal symmetry. The ground state will in 
fact be shown to be the Morse configuration (see [7]): 

. . .  1, -1, -1,l, -1,l, 1,-1, -1,1,1, -1,1, -1, -1,1,. . . .  
The fractal symmetry of this configuration can be seen, in some sense (but this will 
have to be refined below), by noting that if one looks only at the first, third, fifth spin 
etc in the above list, one recovers precisely the original full list. 

To define this non-periodic configuration completely we will need some notation. 
First we define the map S by S(1) = (1, -l), S(-1) = (-1,l). Then the Morse configur- 
ation uM = (ay1 -CO < j < CO} is defined inductively by: (U:, U?) = S (  l), 
(U,,+, , . . . ,  u, ,+~- , )= (S(u , , )  , . . . ,  S ( u 2 , + l - , ) )  for j 3 0 ,  and u ~ = u ? , - ,  for j<O.  

As we will see, we must work not just with this ground-state configuration uM but 
with what we will now distinguish as the ground state itself, namely the ensemble, or 
probability distribution on the set of all configurations, that one gets from the canonical 
ensemble of the model by taking the limit as temperature goes to zero. (From here 
on, a conjguration will always mean some specific set of spin values at all the sites of 
Z, and by a state we will always refer to some statistical ensemble of configurations.) 
Instead of showing directly that uM is a ground-state configuration, we will instead 
show that the ground state is what we call the Morse state mM, which is the unique 
ensemble in which n-point correlations are computed by taking translation averages 
in u M .  (That is, the probability of some pattern of spin values, for example the pattern 
where two consecutive spin values of 1 are followed five sites to the right by -1, is 
given, in the state mM, by the fraction of times that the pattern appears in the spin 
configuration U".) We now state our result in a theorem. 

M M M M 

Theorem. The model has only one translation-invariant ground state and it is the Morse 
state mM. 

Proof: Thinking of the Morse configuration in the set r of all (doubly infinite) 
configurations of 1 s  and -Is, equiped with the usual mathematical structure, we are 
interested in the set M which consists of all configurations in r that can be obtained 
as limits of lattice translations of u': the so-called orbit closure of u M .  (This set M 
will be shown to have probability 1 with respect to the ground state of the model. See 
[7] for a useful characterisation of M.)  One of the main steps in  our argument is the 
following technical lemma. 

Lemma. The configurations U in M are precisely those which satisfy the following 
condition: 

Condition M :  Either uj # (+k or U,,, # U, whenever k = j +2', n = m +2'  and 

m=j+(2p+1)2 ' fo r  any r S O  a n d p 3 0 .  

Postponing the proof of this lemma temporarily, we continue with the proof of the 
theorem. It is known [8] that there is only one possible translation-invariant probability 
distribution, namely mM, on M, and it then follows from the lemma that mM is 
characterised among translation-invariant probability distributions on r by giving 
probability zero to all sets A( j ,  p, r )  for j in Z, p 3 0 and r 3 0, where 

A(j, P, r) = {(+ E ~ I [ o ;  + u,+2r12[(+,+(2p+1)~'+ uj+(2p+2)2'12 + 01% 
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Now consider any translation-invariant ground state of our model, that is any (weak-*) 
limit m, as temperature goes to zero, of finite-temperature equilibrium states. (More 
generally, m could be any translation-invariant probability distribution on the so-called 
ground-state configurations of our model; see [6,9].) We want to show that m = mM. 
We know [9] that m must have minimum energy density, i.e. it must satisfy 

f 2 mEA(0, p ,  r)I V(0,  p,  r )  
p = o  r = O  

= inf c 
= C C mMIA(O, p ,  r)I V O ,  p ,  r )  = 0 

m'[A(O, p ,  r ) l  V(0,  p ,  r )  
m p = o  r = O  

o c c n  

p=O r = O  

where the infimum is over all translation-invariant probability distributions m' on r. 
It follows immediately that m = m', and thus our proof will be complete once we 
prove the lemma. As one might expect from the fact that the structure of uM is 
somewhat complicated, our argument will now need to get rather technical. 

Proof of the lemma. Let B be some t-tuple (b,  , b 2 ,  . . . , b,) of spin values, i.e. 1s and 
-ls,andthenlet  C ( B )  b e t h e ( 2 t + l ) - t u p l e ( c l , c 2 ,  . . . ,  c 2 , + , )  wherec,= b , f o r l s j s r ,  
c, = b,-,( =c,-,) for t + 1 S j s 2t  and c2,+, = b l (  = c , ) .  I t  is known [ 8 ]  that M is precisely 
the set of all configurations a for which the following condition holds: 

Condition G-H:  The pattern C ( B )  never appears in a for any t or any B. 
So we must show that condition M is equivalent to condition G-H. Assume U satisfies 
condition M, and assume a contains some C( B) where B contains t = (2p + 1)2' terms 
for some p 2 1 and r 2 0 :  B = (b , ,  . . . , b(2p+l)2,). Because condition M holds and 
c,+, = c, for 1 s jS t + 1, we must have c,+y = - c l .  Repeating this argument, we find 
that c1+2p2~ = c, . But then again, using the fact that c,+, = c, for 1 s j s t + 1 ,  we find 
that condition M fails when j = 1 + 2p2', k = 1 + (2p + l)2r, m = 1 + (4p + 1)2' and n = 
1 + (4p + 2)2'. This proves the implication for cases where B contains t = (2p + 1)2' 
terms for some p 2 1 and r 2 0. Now consider the cases where B contains t = 2' terms 
for some r 2 0. Using the fact that c ,  = c1+2r = c , + ~ ' + ~ ,  we see that again condition M 
fails, now when p = 0 and so k = m. This completes the implication: condition M 
implies condition G-H. Now assume that U satisfies condition G-H. This implies 
[8] that a belongs to M, and therefore [ 7 ]  that a contains precisely the same patterns 
as uM. So we only need to prove that aM satisfies condition M. From the definition 
of aM we note that a:+, = -a2, for all j .  This implies that in the (one-sided) Morse 
sequence a+M = {aTMI j 2 O}, where aTM = ay fo r j  2 0, of the two subsequences consist- 
ing of the terms at distance 2 apart, a(l)TM = aLM and ~ ( 2 ) : ~  = a;,y,, one is a 
spread-out copy of the Morse sequence (a( l);M = aT') and the other is a spread-out 
copy of the negative of the Morse sequence ( ~ ( 2 ) : ~  = -a:M). From the construction 
of aM this is also true of the four sub-sequences consisting of the terms of a+M which 
are separated by distance 4, and in general the 2' sub-sequences with terms separated 
by distance 2' for any r 2 0. (The fact that this argument only works for the j 2 0 terms 
of aM is of some significance, as will be noted below.) Now we use the fact that the 
configuration uM is 'almost periodic' (see [ 7 ] )  to see that the patterns which appear 
in it are precisely the same as those that appear in the sequence a+M (and they appear 

M 

with the same frequencies). Now the fact noted above, that a:+, = -a2, M for all j ,  
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implies that any two pairs of pairs of identical adjacent terms (such as {uY, uK,} and 
{U? ,  U:+,}, where U? = U:, and U? = U?+,) must as pairs require a translation by an 
even number of sites to coincide (that is, j - k must be even), never an odd number 
of sites. And the above argument shows this same fact to be true for those pairs of 
pairs of like terms which instead of consisting of adjacent terms have the terms a 
distance 2' apart for some r 3 0 .  This proves that U" satisfies condition M, and 
completes the proof of the lemma, and therefore the theorem. 

Note that in our proofs no use is made of the magnitude of V ( O , p ,  r )  when it is 
positive; this shows that models with the desired properties exist with any desired rate 
of decay in p and r. (It may also be of interest that our proof of the lemma is easily 
altered to prove that condition G-H is equivalent to condition M',  which is the same 
as condition M but with 'either vj# u k  or U, #U,,' replaced by 'either uj#ak or 
U ,  # U,, or uj # U,'.) Finally we need to justify our claims about the spectrum and 
fractal symmetry. The spectrum of m M  (defined as usual as the spectrum of lattice 
translation, acting as a unitary operator on the Hilbert space L,(T) with respect to the 
measure m") is well known; see, for example, [ 101. And the fractal symmetry, which 
can now be stated in the sense that all correlation functions 

(uj, = a , ,  uj2 = a 2 ,  . . . , uj,t = a,,) 

computed in the state m M  are invariant under the transformation whereby distances 
between sites are doubled, follows exactly as in the second half of the proof of the 
lemma. 

In summary we note that we have exhibited a statistical mechanical model of 
standard type (an Ising model), with translation-invariant (four-body) interactions of 
arbitrarily short range, for which the ground state is unique and has at least two 
properties of significance not found in previous standard statistical mechanical models 
(see, however, [ 111, which uses many-body interactions of all orders, not just four- 
body): the ground state has some continuous spectrum (as well as a dense set of 
eigenvalues)-of interest for example for its connection with the idea of 'turbulent 
crystals' (see [ 121)-and it has fractal symmetry-which is of interest as, in some sense, 
a derivation of this important symmetry from traditional microscopic laws. In this 
regard it may be of note that the exact symmetry is not found in any of the actual 
ground-state configurations of the model, such as U", but in the state mM. That is, 
the invariance of uM discussed at the beginning of this letter actually only holds for 
either the half space J 2 0 or the half space j S 0 (there is a necessary 'defect' of sorts 
at some site, in this case at j = 0) and to get the symmetry for the whole space 2 we 
are forced to consider the symmetry on the ground state m M  and its correlation 
functions, instead of any ground state conjiguration such as U". 

We gratefully acknowledge useful discussions with Hans Koch. The research work of 
CR is supported in part by NSF grant No DMS-8701616. 
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